A TOTAL EVIDENCE CLADISTIC ANALYSIS OF THE HALIOTIDAE (GASTROPODA: VETIGASTROPODA)

by

Daniel Ludwig Geiger

A Dissertation Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA in Partial Fulfillment of the Requirement for the Degree DOCTOR OF PHILOSOPHY (BIOLOGY)

December 1999

Copyright 1999

Daniel Ludwig Geiger

UNIVERSITY OF SOUTHERN CALIFORNIA THE GRADUATE SCHOOL UNIVERSITY PARK LOS ANGELES, CALIFORNIA 90007

This dissertation, written by

Daniel Ludwig GEIGER

under the direction of his...... Dissertation Committee, and approved by all its members, has been presented to and accepted by The Graduate School, in partial fulfillment of requirements for the degree of

DOCTOR OF PHILOSOPHY Dean of Graduate Studies

Date November 22, 1999

DISSERTATION COMMITTEE

Chairpersons nun

ACKNOWLEDGMENTS

Entire dissertation

My dissertation commitee, composed of co-chairs Jim McLean and Russ Zimmer, and members Dave Bottjer, Bob Lavenberg, and Loren Smith, provided guidance when needed, but otherwise permitted me to pursue my work with minimal interference.

I would like to thank all the staff at museums, who helped to make stays at their institutions successful, helped with library research, and made specimens available for study: Henk Mienis (HUJ), Kathie Way, Julia Freeman, Joan Pickering, David Reid, and John Todd (BMNH), Alison Trew (NMW), Yves Finet and Claude Vaucher (MHNG), Roger Pickery (KBIN), Raye Germon, Jerry Harasewych, and Alan Kabat (USNM), Jim McLean and Lindsey Groves (LACM), Paul Scott and Henry Chaney (SBMNH), Terry Gosliner (CASIZ), David Lindberg (UCMP), Paula Mikkelsen (DMNH & AMNH), Gary Rosenberg and Ned Gilmore (ANSP), Peter Jung (NHB), Philippe Bouchet, Pierre Lozouet, and Philippe Maestrati (MNHN), Margaret Gosteli (NMBE), K. Boss (MCZ), Winston Ponder and Ian Loch (AMS), Shirley Slack-Smith (WAM), and Eike Neubert (SMF).

Additional specimens were made available by the following persons: Ted Baer (Lutry, Switzerland), Dominik and Verena Brantschen-Geiger (Bern, Switzerland), Franziska Brantschen (Randa, Switzerland), Anuschka Faucci (Basel, Switzerland), Marc Girona (France), Mark Jones (Auckland, New Zealand), Peter Schuchert (MHNG), Solly Singer (Rehovot, Israel), Brian Hayes (South Africa), Joan Koven (Astrolabe Inc., Washington, D. C.), Roger Pickery (Wilrijk, Belgium), Katharine Stewart (Carmel, California), Buzz Owen (Gualala, California), and Wolfgang Wranik (University of Rostock, Germany). The systematics discussion group at the Los Angeles County Museum of Natural History was instrumental in shaping my thoughts on cladistics: Bob Bezy, Brian Brown, Kirk Fitzhugh, Guillermo Herrera, John Heynig, David Kizirian, Bob Lavenberg, Don Reynolds, and Christine Thacker.

The staff at Hancock Library at USC and the Research Library of the Natural History Museum of Los Angeles County helped to locate many obscure references.

The work was supported by the following grants and fellowships. The visits of DMNH and ANSP were made possible through a DuPont Merck Scholarschip in Malacology, and a Jessup Fellowship, respectively. Research grants from the Hawaiian Malacological Society, the Western Society for Malacology, the Lerner Gray Fund for Marine Research (AMNH), Sigma Xi, and a Trojan League Grant are kindly acknowledged. USC granted a one year Dissertation Fellowiship.

This dissertation was written in Word 5.1 and QuarkXPress 4 with Times New Roman as justified font and Courier as monospaced font. Illustrations were made in Photoshop 3, and 4, MacDraw II, Powerpoint 4, QuarkXPress 3.1, and MacClade.

Chapter 1: Recent taxa

This work would not have been possible without the critical remarks by several colleagues, who also made their knowledge and data generously available to me: Phil Colman (Sydney, Australia), Youn-Ho Lee (Pasadena, California), Mark Jones (Auckland, New Zealand), Roger Pickery (Wilrijk, Belgium), Benjamin Singer (Rehovot, Israel), Scoresby A. Shepherd (Adelaide, Australia), Katharine Stewart (Carmel, California), Victor Vacquier (San Diego, California), Rick Fallu (Canberra, Australia), Buzz Owen (Gulala, California), and Luiz Simone (Sao Paulo, Brazil). Jim McLean (Los Angeles, California), Veronica Miller (Los Angeles, California), Scoresby A. Shepherd, José Leal (Sanibel, Florida), and two anonymous reviewers read the manuscript, including earlier drafts, and made valuable comments. Gert Lindner (Hamburg, Germany) pointed out a typographical error in Geiger (1998a). This chapter has been slightly updated from Geiger (1998a), however, no new taxonomic decision have been introduced, because a dissertation is unsuitable for such procedures.

Chapter 2: Fossil taxa

This chapter is a collaborative effort by DLG and Lindsey T. Groves (LACM Malacology/Invert. Paleo). LTG has contributed numerous Neogene locality citations, provided obscure references and some figured specimens, and reviewed various ms drafts particularly for paleontologic accuracy. DLG has written and rewritten in excess 90% of the text and produced the figures and plates. This chapter has been published in *Journal of Paleontology* (Geiger & Groves, 1999).

Dave Bottjer (USC), Jim McLean (LACM), and Richard Squires (California State University Northridge), David Lindberg (UCMP), David Dockery, Laurie Anderson, and Tim Hazen critically reviewed various drafts of the manuscript. Akihiro Matsukuma (Kyushu University) kindly helped with some of the obscure references. Darius Stramski (USC) and Anders Warén (Swedish Museum of Natural History) translated a Polish and a Swedish paper, respectively, for us. Tita Rodica (Muzeul de Istorie Naturala "Grigore Antipa", Bucharest) drew out attention to a Romanian publication and translated the relevant parts. Additional information was provided by Claus Hedegaard (UCMP), Hans-Dietrich Laatsch and Manfred Jakubeit (Wolfsburg, Germany), and Padermsak Jarayanbhand (Thailand).

Chapter 3: DNA sequence alignment

This chapter is a collaborative effort between DLG and Kirk Fitzhugh (LACM). The chapter was build on the abductive nature of cladistics worked out by KF. The application of abductive principles to molecular data with the comparison to practices in mophology was carried out by DLG including the development of the new coding strategies. Between 80 and 90% of the text was written by DLG. This chapter is in review with Cladistics since May 1999.

A number of people are thanked for engaging discussions on the above topic. The mention of their names shall not signal their agreement with the content of the chapter. They have been instrumental, however, in sharpening the arguments: Verena and Dominik Brantschen-Geiger, Mark Dawson, Paul Flook, Gonzalo Giribet, Guillermo Herrera, Bob Lavenberg, Jim McLean, Gavin Naylor, Jan Pawlowski, Mason Posner, Mark Siddall, Petra Sierwald, Ellen Strong, and Ward Wheeler. Brian Brown, Doug Eernisse, Jaqueline Reich, and Don Reynolds read earlier versions of the manuscript and made valuable suggestions.

Chapter 4: Biogeography

My appreciation goes to the Palo Alto Research Center of Xerox for offering the free map site on the wold wide web. Jim McLean helped to improve the manuscript. The manuscript is in press with the *Bollettino Malacologico* since August 1999.

Last but not least

The beginnings of this dissertation go back to my highschool years. A number of persons have been instrumental in futhering my interst in marine invertebrates, and particularly in mollusks. Bo Holmstead (Karolinska Institute, Stockholm), Yehuda and Fanny Mazur (Weizman Institute, Rehovot, Israel), and Prof. emeritus Nüesch (University of Basel) convinced my parents that my interest in snails was worthy of encouragement. And so my family—my mother Anneliese Geiger-Cloos, my father Urs-Peter Geiger, and my sister Verena Brantschen-Geiger—did support in the most admirable fashion the son/brother. Early mentors at the University of Basel include Lukas Hottinger, Peter Jung (NHB), David Senn, and Werner Stingeli. Continuing contact with fellow shell collectors not mentioned elsewhere is a joy as always: Yvonne Grimmer, Roland Hadorn, Jean-Caude Caillez, Michael Trippner, Axel Alf.

Support and friendship with many fellow graduate students were mission critical for this undertaking: Nick Appelman, Jay Vavra, Judy Doino-Lemus, Todd Zimmerman (UCLA), Ellen Strong (GWU), and Rob Guralnick (UCB). Other people responsible for keeping me going include Michel Burla, Janka Jarchow, Jasmin Joshi, Alexander Kocyan, Veronica Miller, Willi Rühl, Willy Rühl, Marlies Rühl, Brigitte Wyss-Heiz.

Table of Contents

INTRODUCTION

CHAPTER 1: RECENT GENERA AND SPECIES

OF THE FAMILY HALIOTIDAE RAFINESQUE, 1815
(GASTROPODA: VETIGASTROPODA)
Introduction
Materials and methods
Systematic affinities and characteristics of the family
Problems pertaining to the taxonomy of abalone
Tremata as a taxonomic character and teratological type specimens
Hybrids
Genus-level taxa
Haliotis, sensu stricto16
Other genus-level taxa, and their type species
Use of genus-level taxa
Species-level taxa
Use of subspecies
Index
Notes
Caribbean
European and Senegalese
South African
Eastern African, Red Sea and Persian Gulf

Indian Ocean and Tropical West Pacific	2
Temperate Australian	3
New Zealand	4
Northwestern Pacific	5
Northeastern Pacific	5
Tropical Eastern Pacific	6
Zoogeography	6

CHAPTER 2: REVIEW OF FOSSIL ABALONE

(GASTROPODA: VETIGASTROPODA: HALIOTIDAE)

WITH COMPARISON TO RECENT SPECIES.

Introduction
Diagnostic Characters of the Family
Taxonomy
The shell as the basis of taxonomy
Fossil abalone taxa
Fossil abalone in the phylogenetic context
Preservation
Paleoenvironments
Reef paleoenvironments
Shallow-water rocky paleoenvironments
Time Range
Geographic Distribution

CHAPTER3: DNA SEQUENCE ALIGNMENT IN THE LIGHT OF THE ABDUCTIVE NATURE OF CLADISTIC HYPOTHESIS

GENERATION.

Introduction
Molecular and Morphological Character Equivalence
The observational phase
The explanatory phase
Cladistics as science
Observation: From Perception to Classification
i: Special similarity
ii: Positional correspondence
Sequence alignment
Observation and Explanation
Primary and secondary homology 125
Separation of power
Character Independence
Objectivity and Subjectivity
Character selection and observation
Alignment parameters
Manual editing
Alternative Coding Strategies
Elision
Case sensitive
Missing data

Polymorphic	. 137
Exclusion	. 138
Contraction	. 138
Homology is Special Similarity sensu Remane (1952)	139
Belief formation	. 140
Rational for data exclusion	. 142
Highly Dissimilar Taxa	146
Stretch coding	. 148
Block coding	. 149
Presence/absence coding	. 150
Comparison to practice in morphology	. 150
Better alignment?	152
Conclusions and Recommendations	154

CHAPTER 4: DISTRIBUTION AND BIOGEOGRAPHY OF THE RECENT HALIOTIDAE (GASTROPODA: VETIGASTROPODA) WORLD-WIDE.

Introduction	
Materials and Methods	
Sources of Raw Data	
Abbreviations of collections	
Biogeographical regions	
Biogeographical analysis	
Cladistic analysis of taxa	

Distribution
Distributional patterns
Taxonomic issues
Area cladograms
Cladistic analysis of taxa
Illustrations of species
Biogeography and the fossil record
DISTRIBUTIONAL DATA AND MAPS
Mediterranean and West African Species (Figures 4-4-14, 4-146, 4-147, 4-149, 4
150, 4-170, 4-172, 4-174)
Haliotis marmorata Linnaeus, 1758 (Figures 4-14, 4-146, 4-149) 189
Haliotis stomatiaeformis Reeve, 1846 (Figures 4-14, 4-147, 4-150) 192
Haliotis t. tuberculata Linnaeus, 1758 (Figures 4-4-9, 4-12-14, 4-172, 4-174) . 192
South African Species (Figures 4-14, 4-142-145, 4-148, 4-151-156, 4-159-162) 200
Haliotis midae Linnaeus, 1758 (Figures 4-14, 4-142-145, 4-148)
Haliotis parva Linnaeus, 1758 (Figures 4-14, 4-154-156)
Haliotis queketti Smith, 1910 (Figures 4-14, 4-161, 4-162)
Haliotis spadicea Donovan, 1808 (Figures 4-14, 4-151-153) 202
Haliotis speciosa Reeve, 1846 (Figures 4-14, 4-159, 4-160) 203
East African Species (Figures 4-14-23, 4-130, 4-133, 4-157, 4-158, 4-169, 4-171)
204
Haliotis mariae Grav. 1826 (Figures 4-14-16)

Haliotis mariae Gray, 1826 (Figures 4-14-16)	204
Haliotis pustulata Reeve, 1846 (Figures 4-14, 4-17-20)	204
Haliotis rugosa Lamarck, 1822 (Figures 4-14, 4-21, 4-22)	208
Haliotis squamosa Gray, 1826 (Figures 4-14, 4-130, 4-133)	208

Haliotis unilateralis Lamarck, 1822 (Figures 4-14, 4-23, 4-157, 4-158, 4-169, 4-
171) 208
Indo-Pacific and Central Pacific Species (Figures 4-24-44, 4-63, 4-66, 4-116, 4-117,
4-119, 4-120, 4-122-129, 4-136-141, 4-163-166, 4-175, 4-176)
Haliotis asinina Linnaeus, 1758 (Figures 4-35, 4-36, 4-43, 4-165, 4-166) 210
Haliotis clathrata Reeve, 1846 (non Lichtenstein, 1794) (Figures 4-24, 4-138, 4-
141, 4-175, 4-176)
Haliotis crebrisculpta Sowerby, 1914 (Figures 4-24, 4-25, 4-28) 222
Haliotis diversicolor Reeve, 1846 (Figures 4-24, 4-40-42) 222
Haliotis dissona (Iredale, 1929) (Figures 4-24, 4-139, 4-140)
Haliotis dohrniana Dunker, 1863 (Figures 4-24, 4-120, 4-123) 225
Haliotis fatui Geiger, 1999 (Figures 4-43, 4-116, 4-117) 225
Haliotis glabra Gmelin, 1791 (Figures 4-26, 4-27, 4-29, 4-30, 4-43) 227
Haliotis jacnensis Reeve, 1846 (Figures 4-24, 4-124-129) 228
Haliotis ovina Gmelin, 1791 (Figures 4-31-33, 4-43) 230
Haliotis planata Sowerby, 1882 (Figures 4-43, 4-119, 4-122)
Haliotis pulcherrima Gmelin, 1791 (Figures 4-38, 4-39, 4-44)
Haliotis rubiginosa Reeve, 1846 (Figures 4-24, 4-136, 4-137)
Haliotis squamata Reeve, 1846 (Figures 4-24, 4-63, 4-66)
Haliotis varia Linnaeus, 1758 (Figures 4-34, 4-37, 4-43, 4-163, 4-164) 241
Australian Endemic Species (Figures 4-45-67, 4-131, 4-132, 4-134, 4-135, 4-183-
192)
Haliotis brazieri Angas, 1869 (Figures 4-45, 4-48, 4-67)
Haliotis coccoradiata Reeve, 1846 (Figures 4-47, 4-50, 4-67, 4-186) 253
Haliotis cyclobates Péron & Lesueur, 1816 (Figures 4-51, 4-52, 4-67, 4-185) . 254

Haliotis elegans Philippi, 1844 (Figures 4-53, 4-54, 4-67, 4-192) 255
Haliotis hargravesi Cox, 1869 (Figures 4-46, 4-49, 4-67, 4-189) 256
Haliotis laevigata Donovan, 1808 (Figures 4-57, 4-60, 4-67, 4-184) 256
Haliotis roei Gray, 1826 (Figures 4-61, 4-64, 4-67, 4-188)
Haliotis rubra Leach, 1814 (Figures 4-62, 4-65, 4-67, 4-183)
Haliotis scalaris Leach, 1814 (Figures 4-55, 4-56, 4-58, 4-59, 4-67, 4-190) 263
Haliotis semiplicata Menke, 1843 (Figures 4-67, 4-131, 4-132, 4-134, 4-135, 4-
187)
New Zealand Species (Figures 4-67-79, 4-177-182)
Haliotis australis Gmelin, 1791(Figures 4-67, 4-68, 4-71, 4-177, 4-178) 266

Northwest Pacific Species (Figures 4-80-86, 4-118, 4-121)
Haliotis discus Reeve, 1846 (Figures 4-80, 4-83, 4-86)
Haliotis exigua Dunker, 1877 (Figures 4-87, 4-118, 4-121)
Haliotis gigantea Gmelin, 1791 (Figures 4-81, 4-84, 86)
Haliotis madaka Habe, 1977 (Figures 4-82, 4-85, 4-86)
East Pacific Species (Figures 4-87-102, 4-104-107, 4-109, 4-110, 4-112, 4-113, 4-
167, 4-168, 4-173) 278
Haliotis corrugata Wood, 1828 (Figures 4-88, 4-91, 4-100) 278
Haliotis cracherodii Leach, 1814 (Figures 4-89, 4-92, 4-100)
Haliotis dalli Henderson, 1915 (Figures 4-107, 4-110, 4-113)
Haliotis fulgens Philippi, 1845 (Figures 4-90, 93, 100, 173)
Haliotis k. kamtschatkana Jonas, 1845 (Figures 4-87, 94, 97)

Haliotis kamtschatkana assimilis Dall, 1878 (Figures 4-95, 4-99, 4-100) 296
Haliotis roberti McLean, 1970 (Figures 4-107, 4-109, 4-112, 4-167, 4-168) 298
Haliotis rufescens Swainson, 1822 (Figures 4-96, 4-99, 4-100) 298
Haliotis sorenseni Bartsch, 1940 (Figures 4-100, 4-101, 4-104) 303
Haliotis walallensis Stearns, 1898 (Figures 4-100, 4-102, 4-105) 305
Western Atlantic Species (Figures 4-107, 4-108, 4-111, 4-114, 4-115) 307
Haliotis aurantium Simone, 1998 (Figures 4-107, 4-108, 4-111)
Haliotis pourtalesii Dall, 1881 (Figures 4-107, 4-114, 4-115)

CHAPTER 5: A TOTAL EVIDENCE CLADISTIC ANALYSIS OF THE WORLD-WIDE HALIOTIDAE.

Introduction
Materials and Methods
Source of specimens
SEM preparation
Cladistic methodology
Outgroup comparison
Allozyme frequencies
Outgroup comparison
Reanalysis of allozyme data with comparison to the results of Brown (1993) . 332
DNA coding strategies for 16kD cDNA
Outgroup comparison
Reanalysis of the lysin data

Partial 16S mtDNA (Charley Wray, unpubl. data)	
Morphological characters	
The radula in abalone	348
Outgroup comparison	351
Characters and character states	352
The Epipodium	
Outgroup comparison	359
Characters and character states	359
Potential characters not used	363
Shell morphology	363
Shell mineralogy	363
Analyses with morphological characters	
Classification	
Haliotis, sensus stricto	370
Nordotis	370
Notohaliotis	371
Sanhaliotis	372
Use of Genus-level taxa	372

CONCLUSIONS

Chapter 1: Recent Taxa	.373
Chapter 2: Fossil Taxa	.373
Chapter 3: DNA Sequence Alignment	.373
Chapter 4: Biogeography	.374
Chapter 5: Total Evidence Cladistic Analysis	.375

List of Figures

Figures 1-2 - 1-5. Shells of imperforate specimen and potential hybrid of Haliotis bra-
zieri x hargravesi
Figures 1-6 - 1-9. Shells of designated lectotypes for Haliotis multiperforata and H.
<i>revelata</i>
Figures 1-10 - 1-15. Shells of uncommonly illustrated abalone I
Figures 1-16 - 1-21. Shells of uncommonly illustrated abalone II
Figures 1-22 - 1-27. Shells of uncommonly illustrated abalone III
Figures 1-28 - 1-33. Shells of uncommonly illustrated abalone IV
Figure 2-1: Specimens of fossil haliotids
Figure 2-2: Histograms of number of open tremata for several species of Haliotis. 82
Figure 2-3. Localities of fossil abalone listed in Appendix
Figure 3-1. Treatment of morphological and molecular characters in cladistics with
respect to homology
Figure 3-2. The effect of character coding on homology statements in questionably
aligned DNA sequences, using hypothetical sequences of four taxa
Figure 3-3. Coding strategies for a few highly dissimilar taxa
Figure 4-1. Illustration of the three biogeographical models proposed for the origin of
Haliotidae
Figure 4-2. Area cladogram (Brooks parsimony) for the genus <i>Haliotis</i>
Figure 4-3. Midpoint rooted taxon cladogram of the genus <i>Haliotis</i>
Figure 4-4-13. Shells of the European-Mediterranean species of Haliotis spp190
Figure 4-14. Distribution of European-Mediterranean, west African, and south African
species of <i>Haliotis</i> spp
Figures 4-15-23. Shells of East African abalone

Figure 4-24. Distribution of Indo-Pacific species of <i>Haliotis</i> sp. (I)
Figures 4-25-42. Shells of Indo-Pacific abalone
Figure 4-43. Distribution of Indo-Pacific species of <i>Haliotis</i> spp. (II)
Figure 4-44. Distribution of the central Pacific (Tuamotus) Haliotis pulcherrima. 238
Figures 4-45-60. Shells of abalone endemic to Australia I
Figures 4-61-66. Shells of abalone endemic to Australia II
Figure 4-8. Distribution of endemic Australian and New Zealand species of Haliotis
spp
Figures 4-68-79. Shells of New Zealand abalone
Figures 4-80-85. Shells of the northwest Pacific abalone
Figure 4-86. Distribution of northwest Pacific species of <i>Haliotis</i> spp
Figure 4-87. Distribution of east Pacific Haliotis k. kamtschatkana
Figures 4-88-99. Shells of the northeast Pacific abalone I
Figure 4-100. Distribution of east Pacific species of <i>Haliotis</i> spp. (I)
Figures 4-101-106. Shells of Northeastern Pacific abalone I, and unidentified species.
304
Figure 4-107: Distribution of east Pacific (II), tropical Pacific, and western Atlantic
species of Haliotis spp
Figure 5-1. Trees generated from allozyme frequency data (Brown, 1993)
Figure 5-2. Trees generated from data of Lee & Vacquier (1995)
Figure 5-3. Strict consensus topology of 16S mtDNA sequences
Figure 5-4. Strict consensus tree from all lysin, allozyme, and 16S mtDNA data com-
bined
Figure 5-5. Diagram illustrating the terminology used for the radular teeth found in the
family Haliotidae

Figure 5-6. Illustration of radular character states for central field. Number on images
refer to character number
Figure 5-7. Illustration of radular character states for lateral teeth 3-5
Figure 5-8. Illustration of radular character states for marginal teeth
Figure 5-9. Sample epipodia of <i>Haliotis</i> spp
Figure 5-10. Example of a hypobranchial gland
Figure 5-11. Strict consensus tree of 680 MPRs from combined analysis of allozyme,
lysin, 16S mtDNA, and morphology
Figure 5-12: Strict consensus tree of 32 ingroup taxa from combined analysis of
allozyme, lysin, 16S mtDNA, and morphology, without outgroups
Figure 5-13. Strict consensus tree for combined analysis of lysin, 16S mtDNA, and
morphology, without allozyme data

List of Tables

Table 1-1. Genus-level taxa in the family Haliotidae. 17
Table 2. Differences between the valid taxa of this study with their status in Wagner &
Abbott (1978) and illustrations in Kaicher (1981)
Table 2-1: Comparison of upper Tertiary species with Pleistocene-Recent species from
California
Table 2-2: Chromosome number in Recent Haliotis spp. as indicated in the respective
source
Table 2-3: List of fossil abalone taxa.
Table 4-1. Data matrix of biogeographical analysis. 163
Table 4-2. Recoded allozyme frequency data from Brown (1993).
Table 4-3. Recoded sequence of the lysin data of Lee & Vacquier (1995).
Table 5-1: Source of specimens and data.
Table 5-2. Character states for the radular characters.
Table 5-3: Character states for epipodial characters.
Table 5-4. Character states for hypobranchial gland characters.